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kbstraet--A computer based numerical procedure is used to perform aeroelastic time response analysis of 
thin airfoils oscillating with single and two d.o.f.'s in two-dimensional, unsteady, low-frequency, small- 
disturbance, transonic potential flow. A computational transonic code LTRAN2 based on fully implicit time 
integration scheme is employed to obtain the aerodynamic forces. Structural equations of motion and the 
aerodynamic equations are integrated simultaneously by a numerical method. Results are first obtained for 
a time response example for a flat plate oscillating at M® = 0.7 with (1) a single pitching d.o.f.; (2) a single 
plunging d.o.f.; and (3) two d.o.f.s--plunging and pitching. A parallel set of results are also obtained based 
on subsonic aerodynamic theory for comparison. The agreement is good. Results are then obtained for a 
time response example for a NACA 64A006 airfoil pitching and plunging at M** = 0.85 which was found to 
give the lowest flutter speed for the case considered. The parameters that result in neutrally stable response 
agree with those found in a separate flutter analysis. It was found through comparison between flutter results 
and response analysis that the principle of superposition of airloads is valid for the present example cases. 
The results also include the effect of altitude on aeroelastic response. 

NOMENCLATURE 
ah distance between midchord and elastic axis measured in semi-chords, positive towards the trailing edge 
AI Co/I~to, damping parameter for single degree of freedom pitching case 
A2 K,,/I,,to 2, stiffness parameter for single degree of freedom pitching case 
b semi-chord length 

BI Ch/mto, damping parameter for single degree of freedom plunging case 
B2 K~dmto 2, stiffness parameter for single degree of freedom plunging case 
Ch mechanical damping coefficient corresponding to plunging 
C,, mechanical damping coefficient corresponding to pitching 

c full-chord length 
ct total aerodynamic lifting force coefficient 

cm total aerodynamic moment coefficient about pitching axis 
ct s aerodynamic lifting force coefficient due to unit change in plunging displacement 8 
Cto aerodynamic lifting force coefficient due to unit change in pitching angle a 

6,, aerodynamic moment coefficient about pitching axis due to unit change in plunging displacement 8 
cmo aerodynamic moment coefficient about pitching axis due to unit change in pitching angle a 

h plunging degree of freedom positive when measured downwards 
Io polar moment of inertia of airfoil mass about the elastic axis 
kb oJbl U, reduced frequency with respect to semi-chord length b 
kc oJc/U, reduced frequency with respect to full-length chord length c 

K~ bending stiffness coefficient corresponding to plunging displacement 
Ko torsional stiffness coefficient corresponding to pitching rotation 
m mass of the airfoil per unit span 

M® free stream Math number 
{p} aerodynamic load vector 
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pU2/2, dynamic pressure 
qcct, total aerodynamic lifting force, positive in + h direction 
qc2cm, total aerodynamic moment about pitching axis, positive in + a direction 
(/,Jmb2) l/2, radius of gyration about elastic axis in semi-chords 
airfoil static moment about elastic axis 
time in seconds 
~t, nondimensional time parameter 
displacement vector 
free stream velocity 
U/b~oa, nondimensional flight speed parameter 
S/mb, distance between the elastic axis and the mass center measured in semi-cbord, positive towards the trailing 
edge 
pitching degree of freedom measured positive in nose up direction 
induced angle of attack 
1/(1- M~2) to, Prandtl-Glauert number 
ratio of specific heats 
h/c, oondimensional plunging displacement 
Cdmto, uncoupled mechanical damping parameter corresponding to plunging in two degree of freedom system 
CJmb2to, uncoupled mechanical damping parameter corresponding to pitching in two degree of freedom system 
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t~ m/~'pb 2, airfoil-air mass ratio 
t~' I,l~rpb 4, airfoil-air mass moment of inertia ratio 

h/b, nondimensional plunging displacement 
p free stream air density 
~o frequency of harmonic oscillation 

~oh (Kh/m) v2, uncoupled plunging frequency of airfoil 
~o, (K,~/L,) 112, uncoupled pitching frequency of airfoil 

INTRODUCTION 
In recent years, there has been extensive developments in unsteady computational aerody- 
namics. Several large computational programs have been developed. A state-of-the-art review 
of numerical methods for unsteady aerodynamics was given by BaUhaus and Bridgeman[1]. 

Based on the developments in computational aerodynamics, aeroelastic applications have 
followed. In this study, an application of computational transonic aerodynamics to time- 
dependent aeroelastic analysis is carried out. 

Time dependent aeroelastic response analysis of aeroelastic systems is important in the field 
of aircraft design. Such analysis usually involves in the study of the response motions of an 
aeroelastic system which varies with time. The type of resulting motion depends on the initial 
conditions, the characteristics of applied forces and the dynamic response properties of the 
structural system. Rapidly applied external forces which cause such motion may asise from 
sources such as gust. The nature of aerodynamic forces during such motion depend on flow 
conditions which may be either subsonic, transonic or supersonic. 

A time-dependent response study requires simultaneous integration of the structural and 
aerodynamic equations in time. In the subsonic and supersonic cases, the governing flow 
equations are linear and aerodynamic forces depend upon the body motion in a linear fashion. 
Many unsteady aerodynamic theories are available for the solution of the aeroelastic problems 
for these cases. Several classical examples, illustrating the dynamic response phenomena for 
the subsonic case may be found, for example, in [2]. 

On the other hand, the governing equations for flows in the transonic regime are nonlinear 
and they are characterized by the presence of shocks on the airfoil. Because of these 
complexities, the study of the aeroelastic phenomenon in the transonic regime is fairly 
involved. From earlier studies it has been observed that for the case of flow over an airfoil in a 
free stream at Mach numbers near one, small amplitude motions can cause large variations in 
the aerodynamic forces and moments. In addition, phase differences between the flow variables 
and the resultant forces may be significant. These special characteristics of the transonic flows 
increase the possibility of encountering aerolastic instabilities. 

In computational aerodynamics, methods for the computation of aerodynamic forces of 
small-disturbance transonic flows about oscillating airfoils and planar wings have been well 
developed. A brief survey of such developments can be found in [3]. Based on these 
developments aeroelastic computations have been carried out. A state-of-the-art review of the 
developments in transonic aeroelasticity was given by Ashley [4]. 

The first application of unsteady transonic computations to an aeroelastic response study 
was by Ballhaus and Goorjian[5]. They illustrated the use of the time-integration and the 
indicial approaches for the aeroelastic response problems. They performed an aeroelastic 
response analysis for a NACA 64A006 airfoil with a single pitching degree of freedom with 
pitching axis at the mid-chord. The time responses were computed by using their program 
LTRAN2 for unsteady transonic flow coupled with an integration procedure for the differential 
equation of motion for the airfoil. The motion of the airfoil in a flow at M® = 0.88 was forced 
for the first few cycles with an amplRude of oscillation of 0.5 degrees until the pitching moment 
became periodic, after which the airfoil motion and the aerodynamic response were left free to 
drive each other. As the structural damping coefficient was varied parametrically, the responses 
were obtained for the highly damped, neutral, slightly divergent and highly divergent cases. It 
was shown that in order to obtain a flutter solution for their example system at M® >-0.88, it is 
necessary that the nonlinear aerodynamic equations be used and that the moment variation lead 
the motion. Linear flat plate equations can not be used to predict a phase lead and thus can not 
be used to obtain a flutter solution. 
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Ballhaus and Goorjian also considered another case with a large initial amplitude of 1.5 ° and 
M® = 0.86. This example illustrated a nonsinusoidal pitching moment behavior that could result 
from a large shock wave excursions encountered at larger airfoil motion amplitudes. 

Rizzetta[6] performed an aeroelastic response study of a NACA 64A010 airfoil by simul- 
taneously integrating the LTRAN2 aerodynamic program and the structural equations of 
motion. The study included a single degree of freedom case with airfoil pitching at quarter 
chord and a three degree of freedom case with airfoil pitching, plunging and aileron pitching. 

Mach numbers considered in [6] were 0.72 and 0.82, respectively. For the three degree of 
freedom case, results were obtained as plots of nondimensional pitching displacement (and 
moment), plunging displacement (and lift) and aileron pitching displacement (and moment) vs 
time for various arbitrary values of the airfoil-air mass ratios. The other aeroelastic parameters 
were also selected arbitrarily. All the displacement and force quantities in the figures were 
divided by a'(0), the initial pitching velocity. Values used for a'(0) were 1, 3 and 5 degrees, 
respectively. By varying the values of the airfoil-air mass ratio, converging and diverging 
curves were obtained. It was, however, pointed out that no attempt was made to obtain 
response curves corresponding to flutter condition for the three degree of freedom system. 

Transonic aeroelastic studies conducted so far ([3, 6, 9, 10]) for the two degree of freedom 
system (plunging and pitching) are only limited to flutter analysis. The aeroelastic response 
studies conducted have not included the single degree of freedom case of airfoil plunging and 
the two degree of freedom case. Although the single degree of freedom system does not 
represent the "real world" problem, studies of such case may provide insight to other practical 
aeroelastic problems. On the other hand, the two degree of freedom system can predict the 
flexure-torsion flutter which is the most destructive of all aeroelastic instabilities. Furthermore, 
the "transonic dip" phenomenon reported in [7-9] indicated that flexure torsion flutter speed 
may drop substantially in the transonic regime. 

In this study, aeroelastic response analysis was performed for a flat plate and a NACA 
64A006 airfoil. The cases considered include single pitching degree of freedom, single plunging 
degree of freedom, and two degrees of freedom. Aerodynamic forces were obtained by the u s e  

of the computer program LTRAN2[11] based on the time-integration method. Response results 
were obtained by numerically integrating the aeroelastic equations by a direct time integration 
method. 

The present method was first evaluated by repeating an example in [5] and good agreement 
was found. The method was then evaluated by considering a linear flat plate oscillating with a 
single pitching and a single plunging degree of freedom at M® = 0.7. Response results were 
obtained by using LTRAN2 and also be using the quasi steady-state aerodynamic theory. Both 
solutions were found in good agreement. 

For the two degree of freedom case, a flat plate (at M~ = 0.7) and a NACA 64A006 airfoil (at 
M~ = 0.85) were considered. Time response curves for plunging displacement, lifting force, 
pitching rotation and pitching moment were obtained. By varying the airfoil-air mass ratio, 
these curves became neutrally stable, stable and unstable. The values of the parameters that 
produce neutrally stable responses were found to be in agreement with those obtained in 
separate flutter analyses. 

AEROELASTIC EQUATIONS OF MOTION 

In this study, only plunging and pitching motions of an airfoil are considered. The definitions 
of variables and sign conventions are described in Fig. 1 and Nomenclature. 

In developing the following equations, it is assumed that the airfoil is rigid and the amplitude 
of oscillation is small. Since both the structural and aerodynamic equations are integrated 
simultaneously, it is not necessary to use the principle of linear superposition of airloads. The 
mean angle of attack is assumed as zero in all cases. It is also assumed that there is no coupling 
in mechanical damping. 

(i) Single pitching degree of freedom system 
The equation of motion for an airfoil pitching about an axis at a distance ahb from the 

mid-chord is 

I~ii + C~i + K,a = Q~. (1) 
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Fig. 1. Definition of parameters for two degree of freedom aeroelastic analysis. 

A nondimensional form of (1) can be written as 

Aria' + A2a = IQ:2 (2) el"Jr 

where the prime represents the differentiation with respect to nondimensional time tot. 
The aerodynamic moment Qa may be written as 

Qa = q ¢ 2 c  m (3) 

where the values for the aerodynamic moment coefficient Cm are obtained by using LTRAN2. 
Using (3) and the definition kc = toc/U, (2) can be written as 

8 
a" + A la  ' + A2a = ~ Cm. (4) 

This equation is incorporated in LTRAN2 to obtain the aeroelastic responses. 
If quasi steady-state aerodynamic theory is used, the aerodynamic moment Q~ can be 

written as (from Chap. 5 of [2]), 

Q~ = ~ ' p b 2 {  - Ub(1/2 - ah)a - b2(1/8 + ah2)d} 

+ 21r#Ub2(ah + 1/2){ Ua + b(0.5- ah)d}. (5) 

Correcting Q~ for the effect of Mach number by multiplying the r.h.s, of (5) by Prandtl-Olauert 
number/3, and substituting it into (2) yields. 

dla" + ela' + f la  = 0 (6) 

where d l=  1.0 + [(0.125 + a2)/3//~']. 

el = Al + 2(0.5 - ah)# + 4(ah 2 - 0.25)fl 
I~ ' kc I~ ' kc 

8(ah + 0.5)# 
f, = A2 - /~'k? 

In deriving (6), the correction for the effect of Mach number was made by using Prandtl- 
Glauert number/3 which is valid for steady state results. In the present study the effects of the 
terms containing d and ti of (5) on the response results were negligible when compared to that 
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of the term containing a (see also page 279 of [2]). From eqn (5.346) of (2] it can be observed 
that the term containing a can be independently obtained from steady state formulas. Hence 
Prandtl-Glauert number was used to correct Q~ for the effect of Mach number. This correction 
was required in order to obtain comparable results with LTRAN2. 

Equation (6) is a second order, ordinary differential equation. From this equation, the closed 
form solution for pitching response can be obtained for given initial conditions and other 
variables. 

(ii) Single plunging degree of freedom system 
If h is the plunging displacement measured positive downwards from a mean position, the 

equation of motion for the system can be written as 

m[~" + Chl~ + Khh = Oh. (7) 

The nondimensional form of (7) is written as 

_Oh 8"+ BI8 '+  B28 - (8) 

where the prime represents the derivative with respect to nondimensional time cat. 
The aerodynamic force Oh may be expressed as 

Oh = - qcct (9) 

where cr is the lift coefficient which can be obtained by LTRAN2. A negative sign is introduced 
in (9) because lift force is defined as positive upwards in the computer program. 

Substituting (9) in (8) and rearranging gives 

2c! 
8"+ B~8' + B28 = - --~. (1o) 

This equation is incorporated in LTRAN2 to obtain the aeroelastic responses for the 
plunging case. 

If quasi steady-state aerodynamic theory is used, the aerodynamic lift Qh can be written as 
(from Chap. 5 of [2]) 

Oh = - 2 ¢ Upb l~ - ¢r pb Z h ~ (11) 

Correcting Qh for the effect of Mach number by multiplying the r.h.s, of (11) by Prandtb 
Glauert number//and substtuting it into (8) yields 

where 
d:8" + e:8' +/28 = 0 

d2= I +~, e2=B,+4-~k/f2=B~. 

(12) 

In deriving (12), the correction for effect of Mach number was made by using Prandtl- 
Glauert number/3 which is valid for steady state results. In the present study the effects of the 
term containing/i" of (11) is negligible on response results when compared to term containing/~ 
(see page 279 of [2]). From eqn (5.345) of [2] it can be observed that the term containing h can be 
independently obtained from steady state formulas. Hence Prandtl-Glauert number was used to 
correct Qh for the effect of Mach number. This correction was required in order to obtain 
comparable results with LTRAN 2. 

Equation (12) is a second order ordinary differential equation. From this equation, closed 
form solutions can be obtained for plunging responses forgiven initial conditions and other 
variables. 
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(iii) Two degree o//reedom system--pitching and plunging 
Considering the inertia forces, damping forces, elastic forces and aerodynamic forces, the 

equations of motion for a two degree of freedom system as shown in Fig. 1 are 

mh'+ S6 + Chh + K,h = Qh (13a) 

Sh" + I~6 + C ~  + K~a = Q~. (13b) 

The nondimensional form of (13) can be written as 

~ : , ,+x j ,+~ . f f ,+[~]  2 _ Qh m-b- o  

o~t+r 2 a Qa x~" + r~2a" + ~ ~ --~ a = mb2o~2 

(14a) 

(14b) 

where the prime represents the derivative with respect to nondimensional time oJt. 
Substituting (3) and (9) into (14) and rearranging, the final matrix equation for the response 

analysis is 

= ~---~-~[ 2c,, J 
(15) 

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively, and they are 
defined as 

tin1--ft-¢ l; tc]-- 
UX~l r~-J LO J~'.J '  

o] 
(16) 

The quantities c~ and c= are directly obtained from LTRAN2. 
Equation (15) is incorporated into LTRAN2 to obtain the aeroelastic responses for two 

dimensional airfoils with pitching and plunging degrees of freedom. 

RESPONSE SOLUTION PROCEDURE 

The aeroelastic eqns (4), (10) and (15) can be written in general form as 

[M]{u"} + [C]{u'} + [K]{u} = 0,} (17) 

where [M], [C] and [K] are the mass, damping, and stiffness matrices, respectively; {u} is the 
vector of the displacement degrees of freedom for the structure; prime denotes the derivatives 
with respect to nondimensional time i'= ~ot; {p} is the vector of the aerodynamic loads. 
Equation (17) is in the form suited for numerical integration. 

Many numerical procedures are available in the literature for the solution of the equations 
of motion (17). Discussion of such procedures as applied to dynamic problems of structures can 
be found in references, such as [12]. In the present analysis the common direct integration 
method based on linear variation of acceleration is employed to find the time-history dynamic 
responses of the aeroelastic system. 

The response solution is obtained by using a step-by-step time integration finite difference 
approach. This method is conditionally stable. It was found that the maximum time step 
required for LTRAN2 to obtain accurate aerodynamic results was actually smaller than that 
needed to give accurate results for structural response solution. However, in this study same 
time step was used for both aerodynamic and response computations. Thus, the time step was 
dictated by that needed in aerodynamic computation. 

Within the values assumed for the time step in this study, it was observed that the direct 
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integration scheme is numerically stable. This was verified by repeating a response analysis for 
different time steps. The major advantage of the present scheme lies in its simplicity that only 
one aerodynamic computation is required for each time step. 

In [6], aeroelastic response analysis was performed for one and three degree-of-freedom 
systems. It is stated that it was necessary to use a predictor-corrector approach in order to 
maintain stability. For the cases studied here, however, linear acceleration method was found to 
be sufficiently accurate and efficient. 

Assuming a linear variation of acceleration, the velocities and displacements at the end of a 
small time interval A/" can be expressed as 

{u'}~ =/u }~-A~ + T / u  }~-A~ + T {u j,~ (lSa) 

= + A/'2 
tu '-')/--~/- + - ~  {u"}/-. (18b) 

Substituting (18a) and (18b) into (17) yields 

where 
{u'~}r = [F][{p}r- [C]{v}- [K]{w}] 

[F]= [[M]+TIL'I+Ta/-- 
{v} = + 

{w} = {u}r- r + 

(19) 

(20a) 

(20b) 

(20c) 

For small amplitude (structurally linear) problems, matrix [F] need only be formed once 
since it is independent of time. On the other hand, the aerodynamic load vector {p} depends 
upon {u}, {u'}, kc and M®. The vector {p} is obtained by numerically solving the transonic 
aerodynamic equation with the use of LTRAN2. The values of {u} and {u'} used for computing 
{p} are based on the values obtained at the time t - A t .  

The step-by-step integration procedure for obtaining the aeroelastic response was carried 
out in the following manner. For a set of starting values of {u}, {u'} and {p}, (say, known at time 
t -At ' )  the acceleration vector {u"} at time t was computed from (19). Based on the known 
acceleration vector {u"}, the displacement vector {u} and velocity vector {u'} at time /" were 
computed from (18a) and (18b), respectively. From these quantities the effective induced angle 
of attack at, and its time derivatives were computed for time t. This value of at and other 
required quantities were then read into the LTRAN2 code and the new aerodynamic load vector 
{p} at time t was computed. At this stage all the quantities, namely, {u}, {u'}, {u"} and {p} at 
time i were known so that further, computations for time t+At  can be carried out. This 
process was repeated for every time step. A flow chart of this process is shown in Fig. 2. 

RESULTS 
Aeroelastic response analyses were carried out for two airfoil configurations, a flat plate and 

a NACA 64A006 airfoil. In both cases, the airfoils were considered as single and two degree of 
freedom systems. 

In the aerodynamic computations, a 79 (vertical) by 99 (horizontal) finite difference mesh 
was employed. The mesh pattern near airfoil is shown in Fig. 3. The steady-state solution was 
obtained by using the successive line over-relaxation method (SLOR) and the unsteady 
computation was made by using time-integration method, both available in LTRAN2 code. 
Computations were carried-out on a CDC 6500 computer. 

(i) An NACA 64A006 airfoil pitching at M® = 0.88 
A case of an NACA 64A006 airfoil pitching about the mid-chord axis at M® = 0.88 and 
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Fig. 2. Flow chart for time response analysis. 

kc =0.1 was considered. This case was selected in order to verify the present method by 
comparing the results with those obtained by Ballhaus and Goorjian [5]. 

A detail report of such comparison was given in [13]. Good agreement was found. For 
example, the values of A~ and A2 in (4) that cause neutrally stable response were found in this 
study as 1.05 and 1.437, respectively. In [5], A~ and A2 were obtained as 1.072 and 1.414, 
respectively. 

(ii) A flat plate pitching at M~ = 0.7 
A response analysis was performed for a fiat plate pitching about mid-chord axis with 

k~ = 0.1 and Air= = 0.7. The LTRAN2 (linear) results were compared with those obtained by 
quasi steady-state aerodynamic theory. 

In 
lilllLIlUllll I 
IIIli[Im[lll I 

i i 

I!!ii  iiii i i 
l l l l f l l  I I I I 
liliUal I I 

I$11Hlill I i 
IIIIIII|IILI L 
II1  I1 

lilllllllil i 
llllHii]l 
[[[[ iilli I i 
i I I I IIIII  I I [ 
IIII ....... l i l i l  [ i 

' '  [ "~' " . . . . . . . .  i 
', ', '. '. '.','.I l I I 
l l n n  H n l t  i i ,,1 ", ', ,,,,, ....... ,, 
J i L  

IIIII i t  
IIIII I I 

l l l l l i l l  
Ill[fill 
I 

Fig. 3. Computational mesh near airfoil. 
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In this case, (4) is the governing differential equation of motion. The aerodynamic equation 
was integrated in time for four cycles by forcing a sinusoidal variation of pitching angle with 
amplitude of 0.01 rad. The free motion was started at the end of the fourth cycle. The initial 
conditions abtained for free motion were corresponding to a(0)= 0.0 and a'(0)= 0.01. The 
structural parameters for free motion were so selected that a converging type response could be 
obtained. The values for the damping parameter A1, the stiffness parameter A2, and the 
airfoil-air moment of inertia ratio/~' were 0.5, 1.5 and 1000, respectively. The value assumed 
for ~' was quite high when compared to the actual values for aircraft wings, however, this 
number was required in order to obtain a response solution that can be compared with quasi 
steady-state theory. 

The converging type response curves obtained for pitching angle c~ and pitching moment cm 
are shown in Fig. 4. In the same figure the responses obtained by employing the quasi 
steady-state aerodynamic theory are also shown. These responses were obtained by solving the 
differential eqn (6) for the same values of AI, A2,/J, ' ,  a(0)  and a'(0) as used for LTRAN2. The 
two sets of solutions are, in general, in fairly good agreement. 

Small differences in amplitude and phase angle in Fig. 4 between the two sets of results are 
mainly due to the difference between the two methods. It is observed that there is no phase lag 
between the pitching angle and the corresponding moment in the quasi steady-state solution but 
there is some phase lag in the LTRAN2 solution. Therefore, the effective aerodynamic 
dampings in the system between the two methods are different which may cause the dis- 
crepancy between the two sets of curves. Such discrepancy becomes larger for smaller values 
of/z' since aerodynamic damping is inversely proportional to/~'. 

At this point, it may be noted that LTRAN2 is based on the low frequency approximation 
which is more valid for Mach numbers near unity. The discrepancy found in the two sets of 
curves may also be partly due to the low value of Mach number (0.7) considered. 

(iii) A flat plate plunging at M® = 0.7 
Response results were obtained for a flat plate with only a single plunging degree of freedom. 

The Mach number and reduced frequency kc considered were equal to 0.7 and 0.1, respectively. 
Results were obtained both from LTRAN2 (linear) and quasi steady-state theory. 

The governing differential equation of motion for this case is (10). The aerodynamic 
equation was first integrated by LTRAN2 for four cycles by forcing a sinusoidal plunging 
motion with amplitude of plunging displacement 8 = h/c =0.1. This corresponds to an am- 
plitude of 0.01 rad for the induced angle of attack c~i = kcS'. 
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Fig. 4. Comparison of the response curves obtained by LTRAN2 and quasi steady-state theory for a fiat 
plate pitching about mid-chord at M® = 0.7. 
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Fig. 5. Comparison of the response curves obtained by LTRAN2 and quasi steady-state theory for a flat 
plate plunging at M® = 0.7. 

The free motion was started with initial conditions corresponding to c~i(0) = 0.0 (8 = 0.1) and 
aX0)=0.01 (8'=0.0). The structural parameters were selected so that a converging type 
response could be obtained. The values assumed for the structural damping parameter B~, the 
structural stiffness parameter B2 and the airfoil-air mass ratio # were equal to 0.0, 1.0 and 100, 
respectively. Response curves obtained from LTRAN2 for plunging displacement 8 and lifting 
force coefficient ct are shown in Fig. 5. In the same figure the corresponding results obtained by 
quasi steady-state theory are also shown. These results were obtained by solving the differential 
eqn (12) based on the same initial conditions and structural parameters as used in LTRAN2. 

Response results obtained by both methods compare fairly well. The small differences in 
phase angles and amplitudes may be mainly due to the difference in the methods. 

(iv) A flat plate plunging and pitching about mid-chord axis at M= = 0.7 
Responses were obtained for a flat plate plunging and pitching about mid-chord axis at Mach 

number M~ = 0.7. Both the LTRAN2 (linear) code and the Kernel Function method were used so 
that the two sets of results can be compared. Since this is a linear case good comparison can be 
expected. 

Table 1. Aerodynamic coefficients for fiat plate pitching about mid-chord axis at M® = 0.7 

~erodynamic 
Coeff ic ient 

c£ 6 

c~ 

cm 6 

c m 
ct 

k 
c 

Meth°d~ " Real 

1 0.0669 

2 0.0616 

l 8.449 

2 7.964 

1 0.Ol51 

2 0.0174 

l 1.904 

2 l .985 

*Method I :  
Method 2: 

= 0.05 

Imag. 

O.4225 

0.3974 

-I.338 

-I.133 

0.0952 

0.0990 

-0.3016 

-0.3500 

k = 0.10 
C 

Real Imag. 

0.1700 0.8000 

0.1666 0.7190 

8.001 -l.701 

7.240 -I.488 

0.0479 0.1787 

0.0501 0.1780 

.787 -0.4788 

.794 -0.5117 

Time Integrat ion by LTRAN2 ( l i nea r ) .  
Kernel Function Method. 

k 
C 

Real 

0.3038 

0.2719 

7.557 

6.671 

0.0954 

0.0865 

l .657 

l .640 

= 0 . 1 5  

Imag. 

1 .134 

0.9876 

-2.025 

-I .570 

0.2486 

0.2425 

-0.6361 

-0.5996 
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Fig. 6. Effect of airfoil-air mass ratio on flutter speed for a fiat plate plunging and pitching about mid-chord 
axis at M® = 0.7. 

Before starting the response analysis it was necessary to find the aeroelastic parameters 
corresponding to a neutrally stable condition. Equation (15) is the governing equations of 
motion for this case. The aeroelastic parameters include: U*,/~, xe, (oh/o~e, re, ~rh, (e and ah. The 
values for x~, ~o,/o~, re, ~h, ~re and ah were assumed as 0.0, 0.2, 0.5, 0.0, 0.0 and 0.0, respectively. 

In order to obtain the values of kc, U* and # corresponding to the neutrally stable 
condition, a flutter analysis was performed [3]. The aerodynamic coefficients c~, cto, c,,~ and c,,~ 
were obtained by using the time integration method of LTRAN2 (linear) and the Kernal 
Function method for three values of reduced frequency kc and are shown in Table 1. 
Agreement is good between the two methods. The U-g method was used to perform the flutter 
analysis and the results for flutter speed and corresponding reduced frequency vs/~ are shown 
in Fig. 6. As expected the agreement is excellent between the two methods. 

Response analyses were carried out for stable, neutrally stable and unstable conditions by 
selecting the aeroelastic parameters based on any selected point in the flutter speed curves. 
Because the time integration method was used in performing the response studies, it was 
essential that the flutter curves be obtained by using the time integration method instead of 
other methods such as the indicial and relaxation methods, etc. 

The governing equation of motion for this case is (15). The aerodynamic equation was first 
integrated in time for four cycles by forcing a sinusoidal pitching motion with amplitude of 
0.01 rad. In the fourth cycle the aerodynamic force responses became almost periodic. After 
that, the free motion was started by simultaneously integrating the structural and aerodynamic 
equations. This was started with initial conditions with ~:(0)= 0, ~:'(0)= 0, a(0)= 0 and a'(0)= 
0.01. 

Aeroelastic parameters for the neutrally stable condition were selected from a point on the 
flutter speed curves in Fig. 6 at kc = 0.1. The corresponding values of # and U* were equal to 
289.5 and 7.23, respectively. These values were substituted into (15) and the response analysis 
was carried out. Response curves for pitching angle a and the corresponding pitching moment 
c,, for about six cycles are shown in Fig. 7. After small initial disturbances (due to initial 
conditions) both response curves show a perfect periodic behavior. Similar curves obtained 
for plunging displacement (: and corresponding lifting force c/are shown in Fig. 8. These curves 
also show a perfect periodic behavior after some small initial disturbances. It is seen that the 
neutrally stable conditions obtained by the present response method are in good agreement with 
those obtained in the flutter analyses based on both the time integration and the Kernel 
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Fig. 7. Effect of airfoil-air mass ratio on response curves of rotation and moment for a fiat plate plunging 
and pitching about mid-chord at M= = 0.7. 

Function method. In fact, as anticipated earlier, the results are exactly the same for the 
conditions chosen off the flutter curves using LTRAN 2 (linear). 

In Fig. 7, the response curves for pitching displacement a and pitching moment cm for the 
stable and unstable conditions are also shown. These were obtained by changing the airfoil-air 
mass ratio p. For unstable response, the ~ value assumed was 10% lower than that correspond- 
ing to the neutrally stable condition. This point is in the unstable zone of Fig. 6. On the other 
hand, for stable response the # value selected was 10% higher than that corresponding to the 
neutrally stable condition. The corresponding stable and unstable responses for plunging 
displacement ~: and lifting force ct are also shown in Fig. 8. It is seen that the stable and 
unstable conditions obtained in the flutter analysis produced converging and diverging respon- 
ses, respectively. 

It was also of interest to study the effect of airfoil-air mass ratio (altitude)/z on the peak 
amplitudes of the response curves. In this analysis, the peak amplitudes corresponding to the 
second free cycle were considered. Figure 9 shows plots of the ratio of the second cycle peak 
amplitude to the amplitude of the neutrally stable curve vs the ratio of # to its value at the 
neutrally stable condition. The plots include four curves for plunging displacement, lifting 
force, pitching displacement and pitching moment, respectively. The last two curves coincide. 

(v) An NACA 64A006 airfoil plunging and pitching about l/4-chord axis at M~ = 0.85 
In the flutter analysis performed in [9], a "transonic dip" phenomenon was observed for the 
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Fig. 8. Effect of airfoil-air mass ratio on response curves of displacement and lift for a fiat plate plunging 
and pitching about mid-chord at M~ = 0.7. 
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Fig. 9. Effect of airfoil-air mass ratio on peak amplitudes of the response curves for the flat plate case. 

NACA 64A006 airfoil. Flutter speeds reached a minimum in the neighborhood of M® = 0.85. In 
this study aeroelastic response analysis was carried out for this critical value (0.85) of Math 
number. 

Using the steady-state initial conditions, unsteady computations were carried out by using 
LTRAN2 (nonlinear). The time integration method was employed to obtain the aerodynamic 
coefficients cj 8, cto, c m and Cma. The coefficients for three values of reduced frequency kc are 
shown in Table 2. In the same table, the aerodynamic coefficients computed by UTRANS2 and 
the indicial method in [3] are also given. In general, all three methods agree well. It may be 
noted that the results obtained by the time integration method are expected to be more accurate 
than those obtained by the other two methods for kc < 0.2. 

Based on Table 2, flutter analysis was performed by using the method given in [3]. Plots of 

Table 2. Aerodynamic coefficients for NACA 64A006 airfoil pitching about l/4-chord axis at 
M® = 0.85 

k c = 0.05 k - 0.I0 k = 0.15 
Aerodynamic Method , c c 
Coefficient Real Imag. Real Imag. Real Imag. 

c~6 l 0.302 0.678 0.616 1.067 0.867 1.335 

2 0.136 0.666 0.492 1.180 0.938 1.470 

3 0.163 0.626 0.480 0.962 0.783 1.148 

c£ l 3.561 -6.038 10 .669  -6.160 8.900 -5.780 

2 13 .310  -2.720 II.820 -4.920 9 . 7 7 0  I-6.250 

3 II.803 -3.701 9 . 1 6 0  -4.491 7 . 2 2 3  -4.076 [ 

c l 0.010 -0.038 O.Oll -0.068 -0.028 -0.I04 
m 6 

2 -O.OOl -0.034 -0.005 -0.068 -0.012 -0.I02 

3 0.004 -0.026 0 . 0 0 9  -0.054 0 . 0 1 3  -0.089 

c l -0.749 -0.201 -0.675 -0.I07 -0.691 0.185 m 

2 -0.676 0.021 -0.677 0.053 -0.677 0.082 

3 - 0 . 5 0 1  -0.071 -0.510 -0.147 -0.514 -0.210 

*Method l:  LTRAN2 Time Integration (79 x 99) 
Method 2: LTRAN2 Indicial Method (79 x 99) 
Method 3: STRANS2 and UTRANS2 Relaxation method (59 x 60) 
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Fig. 10, Effect of airfoil-air mass ratio on flutter speed for NACA 64A006 airfoil plunging and pitching at 
M~ = 0.85. 

flutter speed and the corresponding reduced frequency vs airfoil-air mass ratio are shown in 
Fig. 10. The values assumed for ah, Xa, ~oh/~o ~, re, ~h and ~'~ were -0.5, 0.25, 0.2, 0.5, 0 and 0, 
respectively. 

It is seen in Fig. 10 that the agreement in flutter speed among the three methods is not so 
good. This may be due to the assumption of time linearization in the indicial and relaxation 
method. Furthermore, the provision of treating the shock wave motion is lacking in the 
relaxation and the indicial methods. 

In the response analysis, (15) is the governing aeroelastic equation of the system. Reduced 
frequency was assumed as k~ = 0.1. The aerodynamic equation was first integrated in time for 
six cycles by forcing a sinusoidal pitching motion with amplitude of 0.01 rad. In the sixth cycle 
the forced responses in LTRAN2 became almost periodic. From this point onwards free motion 
was considered by simultaneously integrating the aerodynamic and structural equations. Free 
motion was started with initial conditions with ~:(0) = 0, ~'(0) = 0, a(0) = 0 and a'(0) = 0.01. 
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Fig. 11. Effect of airfoil-air mass ratio on response curves of displacement and lift for a NACA 64A006 
airfoil plunging and pitching at M® = 0.85. 
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A neutrally stable response was obtained by considering a point on the flutter speed curve 
obtained by the time integration method in Fig. 10 at kc = 0.1. The corresponding values of/~ 
and U* thus obtained were equal to 252.5 and 5.5, respectively. These values along with the 
other aeroelastic parameters (ah = -  0.5, x~ = 0.25, odo~ = 0.2, r~ = 0.5, kc = 0.I) were sub- 
stituted into (15) and the response analysis was carried out. The responses for plunging 
displacement and corresponding lifting force obtained from LTRAN2 are shown in Fig. 11. 
After some small initial disturbances due to the initial conditions, the response curves shown 
ideal periodic behavior. 

The corresponding stable response curves for pitching displacement a and pitching moment 
cm are shown in Fig. 12. These curves are shown only from the second cycle of the free motion. 
As compared to Fig. 11, there were quite pronounced initial disturbances due to initial 
conditions in the first cycle. However, the responses became almost periodic after the third 
cycle of free motion. 

The curves for neutrally stable responses presented in Figs. 11 and 12 show that the 
neutrally stable conditions obtained by the present response method are in good agreement with 
those obtained in the flutter analysis based on the time integration method. In general, such 
ideal periodic behavior can not be expected since the aerodynamics are nonlinear now. On the 
other hand, the flutter points predicted by the indicial and relaxation methods will result in a 
slightly diverging case. 

The response results for the neutrally stable condition presented in Figs. 11 and 12 also 
show the validity of the principle of superposition of air loads which was used in the flutter 
analysis. In deriving the equations for the simultaneous integration procedure it was not 
necessary to use such assumption. A possible reason for this fact may be for the case 
considered the lift and moment responses were harmonic. However, further testing needs to be 
done to check the validity of the superposition, especially for cases in which the lift and moment 
responses contain higher harmonics (nonlinear). 

In Fig. 11, the response curves for plunging displacement ( and lifting force c~ for stable and 
unstable conditions are also shown. These were obtained by changing the airfoil-air mass ratio 
/z. For unstable response, the/~ value assumed was 10% less than that corresponding to the 
neutrally stable condition. This point is in the unstable zone of Fig. 10. On the other hand, for 
stable response the value of/z assumed was 10% higher than that corresponding to the neutrally 
stable condition. This point is in the stable zone of Fig. I0. Stable and unstable response curves 
obtained for pitching displacement a and pitching moment Cm are also shown in Fig. 12. It is 
seen that the stable and unstable conditions obtained in the flutter analysis produced converging 
and diverging responses, respectively. 

It was also of interest to study the effect of airfoil-air mass ratio tz (altitude) on peak 
amplitudes of response curves. In this analysis, the peak amplitudes corresponding to the fourth 
cycle of free motion were considered. Fig. 13 shows plots of the ratio of fourth cycle peak 
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Fig. 13. Effect of airfoil-air mass ratio on peak amplitudes of the response curves for the NACA 64A006 case. 

amplitude to the amplitude of the neutrally stable curves vs the ratio of # to its value at the 
neutrally stable point. These plots include four curves for plunging displacement, lifting force, 
pitching displacement and pitching moment, respectively. The last two curves coincide. 

(vi) Procedure for finding accurately the transonic flutter boundaries 
In this study a procedure to integrate structural and transonic aerodynamics equations was 

presented. This procedure can be used to find accurately the transonic flutter boundaries of 
single and two degree of freedom systems as follows. 

(1) For a given aeroelastic system, the unsteady coefficients are found either by indicial or 
time integration method. Indicial method is computationally more economical than time 
integration method. 

(2) Based on the unsteady aerodynamic coefficients flutter boundary is found by U-g 
method[3]. The flutter boundary obtained by using time integration aerodynamic coefficients 
may be closer to exact flutter boundary than that obtained by the indicial method. 

(3) Based on aeroelastic parameters corresponding to the flutter boundary given by U-g 
method time response analysis is performed to find displacements and forces. 

(4) If the aeroelastic parameters predicted by U-g method are exact, perfect periodic 
responses will be obtained at step (3). In general, this will not be the case in transonic regime. It 
is necessary to check whether the responses are stable or unstable. 

(5) With the help of flutter boundary curve obtained by U-g method the aeroelastic 
parameters are suitably perturbed such that they are closer to neutrally stable condition. 

(6) Based on new set of aeroelastic parameters the time response analysis is again 
performed. 

(7) Steps (5) and (6) are repeated till satisfactory periodic time response results are 
obtained. 

CONCLUDING REMARKS 
(1) The response results obtained for single degree of freedom systems of pitching and 

plunging for flat plates at M~ = 0.7 show that LTRAN2 (linear) results compare well with the 
results based on quasi steady-state aerodynamic theory. 
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(2) Results obtained for a flat plate with two degrees of freedom at Ma = 0.7 illustrate 
that neutrally stable conditions obtained in the flutter analysis based on aerodynamic 
coefficients computed by the time integration method (LTRAN2) check with the neutrally stable 
conditions obtained by the time-response method. It was also illustrated that the neutrally 
stable conditions obtained in the flutter analysis based on aerodynamic coefficients obtained by 
the Kernel Function method compare well with those obtained by the time-response method. 

(3) Response results obtained for a NACA 64A006 airfoil with two degrees of freedom at 
M~ = 0.85 show that neutrally stable conditions obtained in the flutter analysis based on aero- 
dynamic coefficients computed by the time integration method (LTRAN2) agree well with those 
obtained by the time integration response analysis. However, the neutrally stable conditions 
obtained in the flutter based on the relaxation and indicial aerodynamic coefficients do not 
provide such good agreement. The lack of good agreement may be due to the assumption of time 
linearization in the indicial and relaxation methods. Furthermore, the provision of treating the 
shock wave motion is lacking in the relaxation and the indicial methods. 

(4) Good agreement between the neutrally stable conditions obtained in the flutter analysis 
(based on time integration aerodynamic coefficients) and the time-response analysis indicate 
that the principle of linear superposition of airloads used in the flutter analysis is valid for the 
cases analyzed. A possible reason for this fact may be that for the cases considered the lift and 
moment responses are simple harmonic. However, further testing needs to be done to check the 
validity of the principle of superposition, especially for cases in which the lift and moment 
responses contain higher harmonics (nonlinear). 

(5) In general it may be concluded that the present method is accurate for predicting the 
neutrally stable conditions (flutter) for a two degree of freedom system. This method also takes 
into consideration the movement of the shock whereas it is not possible to do so in a pure 
flutter analysis. Thus, the present method can provide a comparison to experimental flutter 
studies. 

(6) The present time response algorithm requires about 500 sec of CDC 6500 CPU time for 
one cycle. 

(7) For the (79 x 99) mesh used in this study, 150,000 words of core memory was required on 
CDC 6500 computer. 
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